Due to the high activation sparsity and use of accumulates (AC) instead of expensive multiply-and-accumulates (MAC), neuromorphic spiking neural networks (SNNs) have emerged as a promising low-power alternative to traditional DNNs for several computer vision (CV) applications. However, most existing SNNs require multiple time steps for acceptable inference accuracy, hindering real-time deployment and increasing spiking activity and, consequently, energy consumption. Recent works proposed direct encoding that directly feeds the analog pixel values in the first layer of the SNN in order to significantly reduce the number of time steps. Although the overhead for the first layer MACs with direct encoding is negligible for deep SNNs and the CV processing is efficient using SNNs, the data transfer between the image sensors and the downstream processing costs significant bandwidth and may dominate the total energy. To mitigate this concern, we propose an in-sensor computing hardware-software co-design framework for SNNs targeting image recognition tasks. Our approach reduces the bandwidth between sensing and processing by 12-96x and the resulting total energy by 2.32x compared to traditional CV processing, with a 3.8% reduction in accuracy on ImageNet.
translated by 谷歌翻译
Spiking Neural networks (SNN) have emerged as an attractive spatio-temporal computing paradigm for a wide range of low-power vision tasks. However, state-of-the-art (SOTA) SNN models either incur multiple time steps which hinder their deployment in real-time use cases or increase the training complexity significantly. To mitigate this concern, we present a training framework (from scratch) for one-time-step SNNs that uses a novel variant of the recently proposed Hoyer regularizer. We estimate the threshold of each SNN layer as the Hoyer extremum of a clipped version of its activation map, where the clipping threshold is trained using gradient descent with our Hoyer regularizer. This approach not only downscales the value of the trainable threshold, thereby emitting a large number of spikes for weight update with a limited number of iterations (due to only one time step) but also shifts the membrane potential values away from the threshold, thereby mitigating the effect of noise that can degrade the SNN accuracy. Our approach outperforms existing spiking, binary, and adder neural networks in terms of the accuracy-FLOPs trade-off for complex image recognition tasks. Downstream experiments on object detection also demonstrate the efficacy of our approach.
translated by 谷歌翻译
有效的自定义合并技术可以积极地修剪特征图的尺寸,从而减少用于资源约束计算机视觉应用程序的推理计算和内存足迹,最近已获得了显着的牵引力。但是,先前的合并作品仅提取激活图的局部环境,从而限制了它们的有效性。相比之下,我们提出了一种新型的非本地自我煽动合并方法,该方法可用作标准合并层的液位替换,例如最大/平均池或跨性别卷积。所提出的自我发项模块使用斑块嵌入,多头自我注意力和空间通道恢复,然后进行乙状结肠激活和指数软效果。这种自我注意的机制有效地聚集了在下采样过程中非本地激活斑之间的依赖性。具有各种卷积神经网络(CNN)体系结构的标准对象分类和检测任务的广泛实验证明了我们所提出的机制优于最先进的(SOTA)合并技术。特别是,我们超过了在Imabilenet-V2上不同变体上的现有合并技术的测试准确性,平均平均为1.2%。随着初始层中激活图的激进下采样(可减少记忆消耗的22倍),与具有ISO-MEMORY足迹的SOTA技术相比,我们的方法的测试准确性提高了1.43%。这使我们的模型可以在内存受限的设备中部署,例如微型控制器(不会失去明显的精度),因为初始激活映射会消耗大量的芯片内存储器,用于复杂视觉任务所需的高分辨率图像。我们提出的合并方法还利用了通道修剪的想法,以进一步减少记忆足迹。
translated by 谷歌翻译
具有混合精度量化的大DNN可以实现超高压缩,同时保持高分类性能。但是,由于找到了可以引导优化过程的准确度量的挑战,与32位浮点(FP-32)基线相比,这些方法牺牲了显着性能,或者依赖于计算昂贵的迭代培训政策这需要预先训练的基线的可用性。要解决此问题,本文提出了BMPQ,一种使用位梯度来分析层敏感性的训练方法,并产生混合精度量化模型。 BMPQ需要单一的训练迭代,但不需要预先训练的基线。它使用整数线性程序(ILP)来动态调整培训期间层的精度,但经过固定的硬件预算。为了评估BMPQ的功效,我们对CiFar-10,CiFar-100和微小想象数据集的VGG16和Reset18进行了广泛的实验。与基线FP-32型号相比,BMPQ可以产生具有15.4倍的参数比特的模型,精度可忽略不计。与SOTA“在培训期间”相比,混合精确训练方案,我们的模型分别在CiFar-10,CiFar-100和微小想象中分别为2.1倍,2.2倍2.9倍,具有提高的精度高达14.54%。
translated by 谷歌翻译
Supervised Question Answering systems (QA systems) rely on domain-specific human-labeled data for training. Unsupervised QA systems generate their own question-answer training pairs, typically using secondary knowledge sources to achieve this outcome. Our approach (called PIE-QG) uses Open Information Extraction (OpenIE) to generate synthetic training questions from paraphrased passages and uses the question-answer pairs as training data for a language model for a state-of-the-art QA system based on BERT. Triples in the form of <subject, predicate, object> are extracted from each passage, and questions are formed with subjects (or objects) and predicates while objects (or subjects) are considered as answers. Experimenting on five extractive QA datasets demonstrates that our technique achieves on-par performance with existing state-of-the-art QA systems with the benefit of being trained on an order of magnitude fewer documents and without any recourse to external reference data sources.
translated by 谷歌翻译
This paper presents a machine learning approach to multidimensional item response theory (MIRT), a class of latent factor models that can be used to model and predict student performance from observed assessment data. Inspired by collaborative filtering, we define a general class of models that includes many MIRT models. We discuss the use of penalized joint maximum likelihood (JML) to estimate individual models and cross-validation to select the best performing model. This model evaluation process can be optimized using batching techniques, such that even sparse large-scale data can be analyzed efficiently. We illustrate our approach with simulated and real data, including an example from a massive open online course (MOOC). The high-dimensional model fit to this large and sparse dataset does not lend itself well to traditional methods of factor interpretation. By analogy to recommender-system applications, we propose an alternative "validation" of the factor model, using auxiliary information about the popularity of items consulted during an open-book exam in the course.
translated by 谷歌翻译
We introduce Argoverse 2 (AV2) - a collection of three datasets for perception and forecasting research in the self-driving domain. The annotated Sensor Dataset contains 1,000 sequences of multimodal data, encompassing high-resolution imagery from seven ring cameras, and two stereo cameras in addition to lidar point clouds, and 6-DOF map-aligned pose. Sequences contain 3D cuboid annotations for 26 object categories, all of which are sufficiently-sampled to support training and evaluation of 3D perception models. The Lidar Dataset contains 20,000 sequences of unlabeled lidar point clouds and map-aligned pose. This dataset is the largest ever collection of lidar sensor data and supports self-supervised learning and the emerging task of point cloud forecasting. Finally, the Motion Forecasting Dataset contains 250,000 scenarios mined for interesting and challenging interactions between the autonomous vehicle and other actors in each local scene. Models are tasked with the prediction of future motion for "scored actors" in each scenario and are provided with track histories that capture object location, heading, velocity, and category. In all three datasets, each scenario contains its own HD Map with 3D lane and crosswalk geometry - sourced from data captured in six distinct cities. We believe these datasets will support new and existing machine learning research problems in ways that existing datasets do not. All datasets are released under the CC BY-NC-SA 4.0 license.
translated by 谷歌翻译
The celebrated FedAvg algorithm of McMahan et al. (2017) is based on three components: client sampling (CS), data sampling (DS) and local training (LT). While the first two are reasonably well understood, the third component, whose role is to reduce the number of communication rounds needed to train the model, resisted all attempts at a satisfactory theoretical explanation. Malinovsky et al. (2022) identified four distinct generations of LT methods based on the quality of the provided theoretical communication complexity guarantees. Despite a lot of progress in this area, none of the existing works were able to show that it is theoretically better to employ multiple local gradient-type steps (i.e., to engage in LT) than to rely on a single local gradient-type step only in the important heterogeneous data regime. In a recent breakthrough embodied in their ProxSkip method and its theoretical analysis, Mishchenko et al. (2022) showed that LT indeed leads to provable communication acceleration for arbitrarily heterogeneous data, thus jump-starting the $5^{\rm th}$ generation of LT methods. However, while these latest generation LT methods are compatible with DS, none of them support CS. We resolve this open problem in the affirmative. In order to do so, we had to base our algorithmic development on new algorithmic and theoretical foundations.
translated by 谷歌翻译
Graph clustering is a fundamental problem in unsupervised learning, with numerous applications in computer science and in analysing real-world data. In many real-world applications, we find that the clusters have a significant high-level structure. This is often overlooked in the design and analysis of graph clustering algorithms which make strong simplifying assumptions about the structure of the graph. This thesis addresses the natural question of whether the structure of clusters can be learned efficiently and describes four new algorithmic results for learning such structure in graphs and hypergraphs. All of the presented theoretical results are extensively evaluated on both synthetic and real-word datasets of different domains, including image classification and segmentation, migration networks, co-authorship networks, and natural language processing. These experimental results demonstrate that the newly developed algorithms are practical, effective, and immediately applicable for learning the structure of clusters in real-world data.
translated by 谷歌翻译
Selecting the number of topics in LDA models is considered to be a difficult task, for which alternative approaches have been proposed. The performance of the recently developed singular Bayesian information criterion (sBIC) is evaluated and compared to the performance of alternative model selection criteria. The sBIC is a generalization of the standard BIC that can be implemented to singular statistical models. The comparison is based on Monte Carlo simulations and carried out for several alternative settings, varying with respect to the number of topics, the number of documents and the size of documents in the corpora. Performance is measured using different criteria which take into account the correct number of topics, but also whether the relevant topics from the DGPs are identified. Practical recommendations for LDA model selection in applications are derived.
translated by 谷歌翻译